skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Barley, Jordanna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Understanding how latitudinal temperature variation shapes local adaptation of life history strategies is crucial for predicting future responses to warming. Contrasting predictive frameworks explain how growth and other life history traits may respond to differing selective pressures across latitude. However, these frameworks have rarely been explored within the context of fluctuating environmental temperatures across longer (i.e., seasonal) time scales experienced in nature. Furthermore, consequences of growth differences for other aspects of fitness, including reproductive output, remain unclear. Here, we conducted a long-term (17-month) simulated reciprocal transplant experiment to examine local adaptation in two populations of the predatory marine snail Urosalpinx cinerea separated by 8.6 degrees latitude (1000 km). We reared F1 offspring under two seasonally fluctuating temperature regimes (warm and cold, simulating field thermal conditions experienced by low and high latitude populations, respectively), quantifying temporal patterns in growth, maturation, and reproductive output. We identified striking divergence in life-history strategies between populations in the warm regime, with offspring from the low latitude population achieving greater growth in their first year, and high reproductive output coupled with reduced growth in their second year. In contrast, the high latitude population grew slower in their first year, but eventually attained larger sizes in their second year, at the expense of reduced reproductive output. Responses were consistent with this in the cold regime, although growth and reproductive output was reduced in both populations. Our data provides support for adaptive divergence across latitude consistent with the Pace-of-Life hypothesis, with the low latitude population selected for a fast-paced life characterized by rapid development and early reproduction. In contrast, the high latitude population exhibited slower growth and delayed maturation. Our results highlight the potential limitations of short-term comparisons of growth without considering processes over longer time scales that may exhibit seasonal temperature variation and ontogenetic shifts in energy allocation and imply a radical reshaping of physiological performance and life history traits across populations under climate change. 
    more » « less
    Free, publicly-accessible full text available June 26, 2026
  2. Established non-native species can have significant impacts on native biodiversity without any possibility of complete eradication. In such cases, one management approach is functional eradication, the reduction of introduced species density below levels that cause unacceptable effects on the native community. Functional eradication may be particularly effective for species with reduced dispersal ability, which may limit rates of reinvasion from distant populations. Here, we evaluate the potential for functional eradication of introduced predatory oyster drills (Urosalpinx cinerea) using a community science approach in San Francisco Bay. We combined observational surveys, targeted removals, and a caging experiment to evaluate the effectiveness of this approach in mitigating the mortality of prey Olympia oysters (Ostrea lurida), a conservation and restoration priority species. Despite the efforts of over 300 volunteers that removed over 30,000 oyster drills, we report limited success. We also found a strong negative relationship between oyster drills and oysters, showing virtually no coexistence across eight sites. At experimental sites, there was no effect of oyster drill removal on oyster survival in a caging experiment, but strong effects of caging treatment on oyster survival (0 and 1.6% survival in open and partial cage treatments, as compared to 89.1% in predator exclusion treatments). We conclude that functional eradication of this species requires significantly greater effort and may not be a viable management strategy in this system. We discuss several possible mechanisms for this result with relevance to management for this and other introduced species. Oyster restoration efforts should not be undertaken where Urosalpinx is established or is likely to invade. 
    more » « less
  3. Many species face extinction risks owing to climate change, and there is an urgent need to identify which species' populations will be most vulnerable. Plasticity in heat tolerance, which includes acclimation or hardening, occurs when prior exposure to a warmer temperature changes an organism's upper thermal limit. The capacity for thermal acclimation could provide protection against warming, but prior work has found few generalizable patterns to explain variation in this trait. Here, we report the results of, to our knowledge, the first meta-analysis to examine within-species variation in thermal plasticity, using results from 20 studies (19 species) that quantified thermal acclimation capacities across 78 populations. We used meta-regression to evaluate two leading hypotheses. The climate variability hypothesis predicts that populations from more thermally variable habitats will have greater plasticity, while the trade-off hypothesis predicts that populations with the lowest heat tolerance will have the greatest plasticity. Our analysis indicates strong support for the trade-off hypothesis because populations with greater thermal tolerance had reduced plasticity. These results advance our understanding of variation in populations' susceptibility to climate change and imply that populations with the highest thermal tolerance may have limited phenotypic plasticity to adjust to ongoing climate warming. 
    more » « less